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Background

Building sector: energy consumption and GHG emissions 

• Buildings are responsible for 40% of energy consumption and 36% of CO2 emissions in EU

(2017). Source: http://ec.europa.eu/energy/en/topics/energy-efficiency/buildings

(IPCC, 2015)

• “The global contribution from buildings (residential and commercial) towards energy

consumption has steadily increased reaching figures between 20% and 40% in developed

countries, and has exceeded the other major sectors: industrial and transportation” (Pérez-

Lombard et al., 2007)
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Background

The life cycle of a building material
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Background
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Raw earth as a building material

• The expression raw earth describes a construction material consisting of a mix of soil and

water subjected to the least possible transformation before being put in place.

Adobe Cob

Rammed earthCompressed earth bricks

• Various construction techniques
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Background

Raw earth construction

• Ancient building material - (Jéricho, Syria - 8000 BC)

• After the Second World War, raw earth construction was almost completely abandoned

• Since the 1970s, studies have quantified the environmental costs of construction

• More details about history of raw earth construction in Jaquin (2008), Jaquin and Augarde

(2012) and website: www.historicrammed.co.uk

Alhambra, Granada 

(Spain, 10th century)

Haus Rauth , Weilburg an der Lahn

(Germany, 1828)

Great Wall, Jiayuguan, Gansu, 

(China, 14th century)
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Background

• Local material– reduction of environmental impacts (Morel et al., 2001)

Raw earth construction: advantages
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• Comparison: stone masonry VS concrete

• Materials: stones, timber and soil mortar

• The impact of construction assessed by: 

1. Energy to manufacture walls and floors 

2. Amount of transported material to the worksite
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Background

• Manufacturing process - low consumption of energy (Minke, 2000; Little and Morton, 2001)

Raw earth construction: advantages
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• Commonly used construction materials (e.g. fired earth bricks, cement, gypsum) require:

1. Mining in a restricted number of geographical locations

2. Significant levels of transportation

3. High firing temperature

• To prepare, transport and construct earth materials requires about 1% of the energy

required by cement based alternatives

• Earth bricks necessitate about a third of the energy required to produce fired earth bricks,

i.e. 440 kWh/m3 compared to 1300 kWh/m3
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Background

• Hygro-thermal regulator effect (Allinson and Hall, 2010; Pacheco–Torgal and Jalali, 2012;

McGregor et al., 2016; Soudani et al., 2016; Gallipoli et al., 2017; Soudani et al., 2017)

Raw earth construction: advantages
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• Hygroscopic regulator effect. The open network of nanopores in earth materials facilitates

absorption/release of moisture depending on the current ambient humidity

(Allinson and Hall, 2010)
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• Thermal regulator effect. Evaporation (endothermic process) takes latent heat from the

atmosphere during hot times. Condensation (exothermic process) releases latent heat during

cool times.



Background

• Recycling, disposal and demolition waste

Raw earth construction: advantages
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• “At the end of a building life, earth materials can easily be re-cycled or returned to the

ground” (Little and Morton, 2001)

• “Earth materials exhibit some environmental advantages at the end-of-life due to its ease of

re-use” (Arrigoni et al., 2017a)
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Background
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The life cycle of a building material
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Background

Raw earth construction: limitations

• Low strength and stiffness

• Mostly qualitative assessment of hygro -thermal performance

• Weak durability against water erosion
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Background

Raw earth construction: limitations

Low strength and stiffness
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Increase of compaction pressure

(after Olivier and Mesbah, 1986) (after Kouakou and Morel, 2009)

(Olivier and Mesbah, 1986; Venkatarama Reddy and Jagadish, 1993; Attom, 1997; Mesbah et al., 

1999; Kouakou and Morel, 2009)
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Background

Raw earth construction: limitations

Low strength and stiffness
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Cement or lime stabilisation

(Walker, 1995; Jayasinghe and Kamaladasa, 2007; Morel et al., 2007; Ciancio and Gibbings, 

2012; Ciancio et al., 2014; Kariyawasam and Jayasinghe, 2016; Arrigoni et al., 2017b)

Disadvantages

Cement or lime stabilisation 1) increases  the 

carbon footprint and costs 2) complicates the 

recycling of demolition waste
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Background

Raw earth construction: limitations
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Mostly qualitative assessment of hygro – thermal performance
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Coupled mechanisms

Water phase changes – heat flux

Numerical and constitutive modelling 

(Soudani et al., 2016) – Laboratory 

and in-situ measurements (Allinson

and Hall, 2010; Soudani et al., 2017)



Hygro-mechanical behaviour of 

hypercompacted earth

Materials and methods

Mechanical behaviour

Hygroscopic behaviour

Soil characterisation

Hypercompaction procedure

• Small scale cylindrical samples

• Large scale compressed earth bricks
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Materials and methods

Soil characterisation

Grain size distribution (wet sieving + sedimentation) Plasticity chart and recommended region for compressed earth

• The material used in this work is a sandy 

silt with illitic clay

• The fine fraction is classified as inorganic 

clay of medium plasticity 
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Materials and methods

Hypercompaction procedure: small scale cylindrical samples

Schematic of the compaction mould Photograph of compaction mould

• High pressure – three levels of compaction stress: 25, 50 and 100 MPa

• Double compaction with floating mould

• Drainage paths – dissipation of pore water overpressure (soil consolidation)
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Materials and methods

Hypercompaction procedure: small scale cylindrical samples

Compaction curves at 25, 50 and 100 MPa together with standard Proctor

• For each pressure level, samples compacted at different water contents

• The increase of dry density is less than linear with increasing pressure level

• Water drainage observed only for wetter samples
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Materials and methods

Hypercompaction procedure: small scale cylindrical samples

Compaction curves after equalisation

• Equalisation at T = 25 °C and RH = 62% 

• All samples exhibited desaturation and shrinkage

• Water content reduced to 3.5% for all samples

• Dry density increased mainly for wetter samples

• Greater uniformity of samples compacted at 100 MPa
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Materials and methods

Hypercompaction procedure: large scale compressed earth bricks

Photographs of compaction mould

• Compressed earth bricks (200 x 100 x 50 mm3)

• Compacted at 100 MPa and optimum water

content of 5.2%

• Compaction mould composed by four separated

pieces assembled together by two bolts M42

Compressed earth brick (200 x 100 x 50 mm3)
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Materials and methods

Hypercompaction procedure: large scale compressed earth bricks

A B

C D

E F

Brick demoulding

Double hypercompaction inside floating mould
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• Equalisation at T = 25 °C

Materials and methods

Hypercompaction procedure: large scale compressed earth bricks

Statistical properties of forty bricks equalised at T=25° C
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Materials and methods

Mechanical behaviour

Hygroscopic behaviour

Soil characterisation

Hypercompaction procedure

� Small scale cylindrical samples

� Large scale compressed earth bricks
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Effect of material density

Effect of relative humidity

Compressive strength of 

hypercompacted bricks

Hygro-mechanical behaviour of 

hypercompacted earth
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Mechanical behaviour

Effect of material density: Young modulus

• Five loading-unloading cycles to measure the Young modulus

• Hysteretic behaviour during loading-unloading cycles

• Young modulus taken as average slope of fitting lines of unloading branches

• Young modulus increased more than linearly with increasing dry density

Typical stress-strain relationship under loading-unloading cycles Variation of Young modulus with dry density
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Mechanical behaviour

Effect of material density: compressive strength

Variation of compressive strength with dry density

• Peak of compressive strength and brittle failure

• Compressive strength grew more than linearly with increasing dry density

• Further marginal increase of dry density would significantly improve mechanical performance

Typical stress-strain relationship under compressive strength test
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Mechanical behaviour

Effect of relative humidity

• Cylindrical samples compacted at 25, 50 and 100 MPa and optimum water content

• Equalisation at T = 25°C and RH= 95%, 77%, 62%, 44% and 25%

• Five loading-unloading cycles to measure the Young modulus

• Load increased until sample failure to measure compressive strength

• Temperature � and relative humidity �� converted into total suction � by Kelvin equation 
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Mechanical behaviour

Effect of relative humidity

Variation of Young modulus with total suction: 

unstabilised samples

Variation of compressive strength with total suction: 

unstabilised samples

• Stiffness and strength grew as suction increased from 7 to 112 MPa but stabilised afterwards

• Result is consistent with Fischer (1926), i.e. stabilising effect of water menisci grows with

increasing total suction towards constant asymptote
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Mechanical behaviour

Compressive strength of hypercompacted bricks
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• Effect of aspect ratio

• Effect of end-friction confinement



Mechanical behaviour

Compressive strength of hypercompacted bricks

Effect of aspect ratio

Variation of compressive strength with loading direction

Loading directions

• Bricks loaded along three perpendicular directions

• The highest compressive strength measured when

load is applied on largest surface (Aubert et al., 2016)

• Lower and more reliable values of compressive

strength obtained along the other two directions
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Mechanical behaviour

Compressive strength of hypercompacted bricks

Effect of end-friction confinement

Compressive strength of bricks with or without Teflon capping 

Compressive strengths of raw and fired earth bricks 

• Bricks loaded on smallest surface

with and without Teflon capping

• Teflon capping reduced average

compressive strength of 12%

• Most representative value of

material strength given by test

with Teflon capping
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Materials and methods

Mechanical behaviour

Hygroscopic behaviour

Soil characterisation

Hypercompaction procedure

� Small scale cylindrical samples

� Large scale compressed earth bricks
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Effect of material density

Effect of relative humidity

Compressive strength of 

hypercompacted bricks

Moisture buffering capacity

Hygro-mechanical behaviour of 

hypercompacted earth

Ecoconstruction School, Anglet, 28-29  September 2017



Hygroscopic behaviour

Testing procedure

Climatic chamber

• Tests on samples compacted at 25, 50 and 100 MPa and optimum

water content

• Relative humidity cycles of 75% (12h)/ 53% (12h) at 25 °C with

regular sample mass measurements (ISO 24353, 2008)

• Cycles end when moisture uptake at RH=75% is equal to moisture

release RH=53% during last three cycles

• Determination of the Moisture Buffering Value MBV

“The MBV indicates the amount of water that is transported in or out of

a material per open surface area, during a certain period of time, when it

is subjected to variations in relative humidity of the surrounding air”.

(Rode et al., 2005)

MBV = 
∆�

�	∆%��	
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Hygroscopic behaviour

Moisture buffering capacity

Moisture adsorption of unstabilised samples 

compacted at 25, 50 and 100 MPa

Pore size distribution of cylindrical samples 

compacted at 25, 50 and 100 MPa

• All samples showed same hygroscopic

behaviour regardless of compaction pressure
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Hygroscopic behaviour

Moisture buffering capacity

Moisture adsorption of unstabilised samples 

compacted at 25, 50 and 100 MPa

MBV uptake and MBV release of samples compacted 

at 25, 50 and 100 MPa

• Hysteresis during the first two cycles but reversible behaviour afterwards

• MBV uptake and MBV release

• Characteristic MBV of the material is equal to 4.2
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MBV = 
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Hygroscopic behaviour

Moisture buffering capacity

• Comparison with MBVs obtained by

McGregor et al. (2014). Same testing

conditions [cycle 75% (12h)/ 53%

(12h)] (ISO 24353, 2008)

• Comparison with MBVs obtained by

Rode et al. (2005). Different testing

conditions [cycle 75% (8h)/ 33% (16h)]

(NORDTEST project)
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Hygro-mechanical behaviour of 

hypercompacted earth
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Conclusions

• Hypercompaction procedure at two scales: cylindrical samples and compressed earth bricks

• Stiffness and strength increase more than linearly with increasing dry density

• Stiffness and strength increase with increasing total suction

• Strength of hypercompacted bricks similar to stabilised earth and standard masonry bricks

• Excellent moisture buffering capacity not affected by compaction pressure

Ecoconstruction School, Anglet, 28-29  September 2017



Durability against water erosion
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Cement or lime stabilisation: addition of cement and lime in percentages ranging from 5% to

15% (Walker, 1995; Bui et al., 2009; Kariyawasam and Jayasinghe, 2016; Arrigoni et al., 2017)

Alkaline activation: mixing the soil with solution of Ca(OH)2, KOH and NaOH (Cheng and

Saiyouri, 2015; Elert et al., 2015; Slaty et al., 2015)

Soil stabilisation
Weak durability against 

water erosion

Silicone based admixture: addition of silane-siloxane emulsions or surface treatments (Kebao

and Kagi, 2015)

Plant aggregates or animal waste: addition of cereal straw, wood aggregates, bast fibres or

sheep wool, cow dung (Galan-Marin et al., 2010; Aymerich et al., 2012; Danso et al., 2015;

Laborel-Préneron et al., 2016; Millongo et al., 2016)

MICP: microbial induced calcite precipitation (Dejong et al., 2013; Salifu et al., 2016)
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Heat: earth bricks thermally treated at low firing time and temperature (Mbumbia et al., 2000;

Karaman et al., 2006)



• Preliminary assessment of durability performed by immersion tests (DIN 18945, 2008)

• Unstabilised earth exhibited limited durability stabilisation considered indispensable

• Stabilisation achieved by mixing the soil with stabilising liquid additives composed by:

o Silane-siloxane emulsion

o Solution of NaOH at molarities 1, 2, 4 and 8 mol/l – pure or blended with Silane-

siloxane emulsion
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Durability against water erosion

Stabilisation methods
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Immersion tests (DIN 18945, 2013)

Results from immersion tests

Three compositions were selected for

further testing:

• 5.20% silane-siloxane emulsion

• 5.20% NaOH solution at 2 mol/l

• 1.08% silane-siloxane emulsion + 4.12%

NaOH solution at 2 mol/l

• Samples stabilised with higher concentrations of silane-siloxane showed limited mass loss

• Addition of NaOH improved durability as concentration increased from 1 mol/l to 2 mol/l

• Further increase of NaOH (i.e. 4 mol/l and 8 mol/l) was no longer effective
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Durability against water erosion
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Effect of relative humidity on stiffness and strength

Variation of Young modulus with total suction: 

unstabilised and stabilised samples compacted at 100 MPa

Variation of compressive strength with total suction: 

unstabilised and stabilised samples compacted at 100 MPa

• Stabilised samples are less sensitive to variations of relative humidity

• Stabilised samples show weaker mechanical properties

• Chemical stabilisation inhibited inter-particle bonding produced by capillarity
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Durability against water erosion

Ecoconstruction School, Anglet, 28-29  September 2017



Moisture buffering capacity of unstabilised and stabilised samples

Last stable cycle of unstabilised and stabilised samples MBVs of unstabilised and stabilised samples

• Stabilisation reduced moisture buffering capacity depending on type of stabiliser

• Hygroscopic performance ranges between excellent (NaOH solution) and good (Silane-

siloxane emulsion, mix of NaOH and Silane-siloxane emulsion)
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Durability against water erosion
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Durability against water erosion

Conclusions
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Recommendations for future work

• Further investigation should be conducted to develop novel stabilisation methods that

protect earthen materials from water erosion while maintaining a high moisture buffering

capacity, adequate mechanical performance and low environmental impact

• The influence of compressed earth bricks on the quality of indoor air has not been assessed

in the present work. Further research in this direction could investigate the potential of

earthen materials to improve living condition inside dwellings

• A life cycle assessment of earth structures should be performed to quantify the

environmental impact of this construction technique. This assessment could also inform the

choice of stabilisation method.
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Thank you for your attention
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